
COWPILOT: A Framework for Autonomous and Human-Agent
Collaborative Web Navigation

Faria Huq Zora Zhiruo Wang Frank F. Xu Tianyue Ou Shuyan Zhou
Jeffrey P. Bigham† Graham Neubig†

School of Computer Science, Carnegie Mellon University
{fhuq, jbigham, gneubig}@cs.cmu.edu

†Equal Supervision

Abstract

Web agents capable of conducting web tasks
on user behalf have gained attention for their
task automation potential. However, they often
fall short on complex tasks in dynamic, real-
world contexts, making it essential for users to
work collaboratively with the agent. We present
COWPILOT, a framework supporting both au-
tonomous and human-agent collaborative web
navigation, and evaluation across task success,
user experience, and task efficiency. COW-
PILOT eases human effort by starting with
agents proposing next steps, meanwhile allow-
ing humans to execute, pause, or reject agent-
proposed steps and take alternative actions in-
stead; supporting seamless action-taking be-
tween agent and human participants. We con-
duct case studies on five websites and find
that human-agent collaborative mode achieves
the highest 95% success rate while requiring
humans to perform only 15.2% of the total
steps. Even with human interventions during
task execution, the agent successfully drives
up to half of task success on its own. COW-
PILOT serves as a useful tool for data col-
lection and agent evaluation across websites,
which we hope will facilitate further advances.
Video demonstrations are available at https:
//oaishi.github.io/cowpilot.html.

1 Introduction

Agents supported by large language models
(LLMs) have become increasingly capable of au-
tomating digital tasks such as web navigation
(Zhou et al., 2023; Deng et al., 2024). While ex-
isting frameworks for web agents mostly focus on
solo, autonomous agents (Zheng et al., 2024b; Iong
et al., 2024; Drouin et al., 2024), we identify the
need for users to interact with the LLM agent for
varied purposes such as supervision and collabora-
tion, i.e., the copilot mode. While existing frame-
works (Lù et al., 2024; Drouin et al., 2024; Wang
et al., 2024a; Zheng et al., 2024b) mainly support

users communicating with agents via natural lan-
guage (NL) feedback, or recording actions of hu-
man users alone (Pan et al., 2024b), they do not
support dynamic human-agent collaboration during
a task, where humans and LLM agents alternate
actions to recover from mistakes. We ask: How can
we enable human-agent collaborative task-solving?
and further, How do agents perform under such dy-
namic settings?

To help answer these questions, we introduce
COWPILOT (§2), a lightweight framework that can
be seamlessly integrated into user web activities
as a Chrome extension. COWPILOT starts with
the LLM agent suggesting actions for human’s ap-
proval, meanwhile allowing human to pause or
reject the agent-suggested actions and take alter-
native ones to drive the process; human can also
choose to resume the agent-driven process at any
time to ease the effort (§2.1). To systematically
evaluate this collaborative process, we propose sev-
eral metrics for task accuracy, user experience, and
efficiency aspects (§2.2).

Beyond agent web automation, COWPILOT en-
ables a wide range of use cases (§3), including:
web automation (§3.1), data collection including
agent trajectory and user feedback (§3.2) as well
as evaluations for single or multiple agents (§3.3).

We conduct studies on five websites across shop-
ping, social, and technical domains (§4), and show
COWPILOT collaborative mode achieves higher
success rates over autonomous agents (by 47%)
and even human-only settings (by 6%), with the
LLM agent taking 84.8% of the steps and drive up
to half of the task successes. These results sug-
gest the great potential for accuracy and efficiency
improvement with copilot agents.

Overall, COWPILOT showcases the great poten-
tial of human-agent collaborative web navigation,
and serves as a useful tool for future web automa-
tion, data collection, and evaluation research.

1

https://oaishi.github.io/cowpilot.html
https://oaishi.github.io/cowpilot.html

Step 3: To help the agent
progress, the user steps
in and browses to the
‘space’ forum

Step 2: Agent
gets stuck since it
can not locate the
‘space’ forum and
scrolls indefinitely

1
2

3

4
5 6

After user
intervention,
the agent
now
successfully
completes
the task

: Tell me the count of comments that have received more downvotes than upvotes for the user who made the latest post on the space forum.Goal

Step 1: Agent
navigates to
Forums page

Step 4: Agent
finds the latest
post

Step 5: Agent visits
the comments page

Before user intervenes After user intervenes

Figure 1: A step-by-step illustration of how human intervention enables the agent to overcome a failure point during
task execution. The figure uses gray edges to represent the agent’s autonomous actions and blue edges to indicate
human intervention. The process begins with the agent attempting the task independently (Step 1) and navigating
to the interface to list available forums (Step 2). At this stage, the agent gets stuck, unable to locate the desired
‘space’ forum. A human intervenes (Step 3), guiding the agent to the correct forum. The user then resumes the
agent’s operation (Step 4), allowing it to retrieve the required post and complete the task by navigating to the
comments section (Step 5)."

2 COWPILOT

In this section, we introduce the COWPILOT frame-
work (§2.1) and evaluation metrics for task accu-
racy and collaboration quality (§2.2).

2.1 The COWPILOT System

Given an objective o stated in natural language
(NL) (e.g., book a flight) for the web environment,
we define two agents: one agent instantiated with
an LLM policy L, and one human agent H. At
each time step t, based on the observation ot from
the environment state st, either the LLM agent or
human agent generates an action at, formalized
as at = L(t, ot, a0:t−1). Executing at on the en-
vironment results in a new state st+1 that gives
observation ot+1 that drives the next step. The two
agents collectively generate a sequence of actions
a0:n over n steps, until it reaches a task termination
condition, e.g., output STOP or a maximum number
of steps. By default, the LLM agent starts gener-
ating actions aLt from t = 0, defined in Table 1,
unless intervened by the human agent H.

Actions taken by the human agent H are criti-
cal to optimizing COWPILOT’s decision-making
pipeline. When the human agent intervenes, they
provide contextual feedback by identifying and cor-
recting prior mistakes made by the LLM agent.
This redirection helps the agent recover from a sub-
optimal path and proceed with a more viable course
of action.At the same time, by integrating human
actions into its action history, COWPILOT ensures
the LLM agent is aware of human corrections since
its last decision, preventing redundant actions and

enabling efficient task progression. To ensure effec-
tive integration of these human actions, COWPILOT

incorporates the following core modules:
Suggest-then-Execute under Human Supervi-
sion At any time step, the human agent H can
decide to take over by generating aHt . More con-
cretely, the LLM agent L generates an action ai
and presents it as a suggestion for the tentative next
step to the user (Figure 2), which includes a visual
indicator highlighting the target element for the
proposed action, accompanied by a textual expla-
nation of the agent’s reasoning. This tentative step
is presented to the human agent for at most five
seconds, and is automatically executed if the hu-
man agent does not oppose. Otherwise, the human
agent can choose to reject or pause the action, and
then take over to produce action. They can also
transfer the action back to the LLM-based agent
by hitting the resume button. This take-over-then-
back process can be conducted unlimited times per
task-solving session. This mechanism balances
operational efficiency with user oversight, allow-
ing users to intercept potential errors without the
burden of manually approving every step.
Pause LLM Agent: Extract Human Actions
Whenever the human agent H rejects the LLM-
proposed action, our COWPILOT system starts
tracking human activity on the websites, particu-
larly what webpages and UI elements they interact
with. To capture this micro-level metadata, we uti-
lize HTML event listener1, that are attached to the
interactive elements (e.g., text field, buttons, drop-

1https://developer.mozilla.org/en-US/docs/Web/
API/EventTarget/addEventListener

2

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

Action Raw Human Action Description

click(elem) click Click on a webpage element using the mouse.
hover(elem) mouseover Hover the mouse over an element without clicking it.
type(elem, text) input Enter text into a text area or text box.
scroll(dir) wheel Scroll the webpage up/down/left/right.

goto(url) Tabs.onUpdated Navigate to a specific URL.
goto(tab) - Navigate to a specific tab.

finishwithanswer(text) -
For information retrieval task, terminate the task with
retrieved textual information.

finish() - Mark the task as completed.
failure() - Mark the task as failed and uncompleted.

Table 1: Action space of agents in COWPILOT. LLM agent supports all actions in the Action column. Human
actions are captured by entries in the Raw Human Action column and transformed into Actions.

down menu) in the current webpage and triggered
each time the elements are accessed by the user
(Figure 2).

Note that, actions captured by the HTML event
listener can include noisy actions irrelevant to the
task (Siqueira and Baldochi, 2018; Cheng and
Kumar, 2015), such as unintentional mouseover
events. Hence, we transform the listener-captured
actions to the LLM agent actions space, from
Raw Human Action to Action column in Table 1,
which are also associated with proper textual de-
scriptions that can help the agent interpret user
inputs effectively. To facilitate this transforma-
tion, we use an off-the-shelf LLM (in this case,
GPT-4o-2024-08-06) and provide the raw human
actions as input. The model outputs the trans-
formed and cleaned version of the actions. (The
exact prompt for this transformation is shown in
§A.1.)
Resume LLM Agent: Predict next Action using
Human Input If the human agent chooses to
resume the LLM agent at any given step, our COW-
PILOT stops tracking human actions and restarts
LLM agent generation (Figure 2). Note that the
LLM agent has access to all previous actions gen-
erated by itself and the human agent.

2.2 Evaluation Metrics

To evaluate the agent performance in COWPILOT,
we report general agent task success. In addition, to
better quantify human-agent collaboration, we in-
troduce five evaluation metrics to measure various
aspects throughout task execution.

General Task Success To measure generic task
success, we measure end-to-end task accuracy,
which measures if the task objective is achieved

after the agent task-solving process. At the end of
the task, the agent self-marks its success or fail-
ure by generating a finish/failure action high-
lighted in Table 1. Optionally, the user can over-
write the result if they disagree with the agent’s
self-evaluation.

Human-Agent Collaboration To measure how
human and agent interacted with each other
throughout the task execution, we first measure
the engagement of both parties, by: (1) Agent step
count: How many steps are taken by the agent per
task; (2) Human step count: How many steps are
taken by the human per task; (3) Total step count:
the sum of steps taken by human and agent.

Meanwhile, we measure agent capabilities via
(4) Human intervention count: How many times
does the user pause the agent to take actions them-
selves. Note that a single intervention may involve
multiple steps performed by the human, as the inter-
vention continues until the agent resumes. A higher
value potentially suggests that the agent made fre-
quent errors and users had to step in to resolve the
mistakes; and (5) Agent-driven Completion Accu-
racy: Measures how many tasks were successfully
completed by the agent, i.e., the terminating step
was taken by the agent. A higher value indicates
the agent’s ability to recover and complete tasks
autonomously after human intervention, whereas
a lower value reflects its dependency on human
assistance.

3 Usecases of COWPILOT

Our COWPILOT unveils numerous potential use
cases. We particularly highlight three use cases
under the scope of this work.

3

1

2 3

..

..

Suggest

Pause

Resume
4 5

Figure 2: Example of COWPILOT’s core interaction modules during task execution. At step 1 , the LLM agent
generates a suggestion, highlighting the textual description and the UI element where the action will be performed.
At step 2 , the user identifies an erroneous action, chooses to pause the LLM agent, and proceeds to perform
corrective actions manually (step 3 , e.g., typing in the textfield, highlighted in blue). At step 4 , the user chooses
to resume the LLM agent, allowing it to continue generating actions. The agent resumes successfully and proceeds
to execute subsequent steps autonomously (step 5).

3.1 Web Automation

COWPILOT can be a standalone agent framework
to automatically conduct web tasks for end users.
COWPILOT is implemented as a Chrome exten-
sion where all computations other than the LLM
calls are handled locally with minimal storage re-
quirement (<50MB). Any users can easily install
COWPILOT with just four clicks and use it with
their personal API key. We use LiteLLM2 proxy
server for our backend LLM, enabling COWPILOT

to support all available models, including GPT4
and Llama. Depending on whether the user wants
to participate in task-solving, our agent can operate
in two modes: 1) Fully autonomous mode: The
agent conducts a user-issued task start-to-end; 2)
CoPilot mode: Human and agent collaboratively
solve a task, which is useful for complex tasks
where the agent is more prone to make mistakes.

3.2 Data Collection from Websites

COWPILOT can also be used as a data annotation
tool to collect task trajectories across any website
accessible via the Chrome browser. Deployed as
a Chrome extension, COWPILOT requires no addi-

2https://docs.litellm.ai/docs/

tional setup and supports both simulated and self-
hosted websites.

We can track all actions conducted by LLM
agents and humans. Beyond human and LLM
agent actions, COWPILOT also collects human ac-
tion feedback at both (i) step-level: whether the
user judges the current step correctly leads to task
success, and (2) task-level: whether the entire tra-
jectory correctly solves the task. These rich data
collections can easily facilitate various studies such
as user behavior studies and advanced agent learn-
ing strategies.

3.3 Evaluation and Comparative Analysis of
Agent Performance

COWPILOT can be used to evaluate and compare
agent performance. We support a wide range of
open-weight and closed-source models served via
LiteLLM. While this paper focuses on comparing
GPT and LLaMA, the framework can easily extend
to other open and closed-source models.

To evaluate a particular model, the user can se-
lect a model before initiating a task. Once the task
is completed, COWPILOT presents results evalu-
ated in the metrics from §2.2. To compare different
models on the same task, the user can re-do the task

4

https://docs.litellm.ai/docs/

Mode
LLM

Backbone
End-to-End

Task
Accuracy

(↑)

Human-Agent Collaboration Metrics
Agent
Step

Count
(↑)

Human
Step

Count
(↓)

Total
Step

Count
(↓)

Human
Intervention

Count
(↓)

Agent-driven
Completion
Accuracy

(↑)

Fully Autonomous
GPT-4o 0.48 5.48 0.00 5.48 0.00 0.48

Llama 8B 0.04 7.00 0.00 7.00 0.00 0.04

CoPilot
GPT-4o 0.95 6.36 1.14 7.50 0.73 0.52

Llama 8B 0.81 4.77 4.15 8.92 1.15 0.05
Human-only - 0.89 0.00 9.93 9.93 - -

Table 2: Evaluation on WebArena subset using COWPILOT.

with different models, allowing for clear, unbiased
comparisons under identical conditions.

4 Exemplar Findings via COWPILOT

To demonstrate the usage of COWPILOT, we
evaluate on a subset of WebArena (Zhou et al.,
2023) benchmark, including 27 tasks catego-
rized into easy, medium, and hard difficulty lev-
els. We categorize the difficulty by the num-
ber of examples successfully solved by the top-
performing agent (Wang et al., 2024b) on We-
bArena, and assign them as easy, medium, hard
if they have <2, 2–4, and >4 correctly solved ex-
amples among the same task template group. We
evaluate under two settings: fully autonomous
and copilot mode, using GPT-4o-2024-08-06 and
Llama-3.1-8B-Instruct as backbones for the
LLM agent. For this study, three authors served as
human agents, independently performing the tasks
for both settings. The results reported represent the
average performance across these evaluations.

Additionally, we included a baseline where tasks
were executed solely by humans without any agent
participation. Table 2 reports results on all metrics
introduced in §2.2.

4.1 Copilot Mode Achieves the Best Accuracy

CoPilot mode with GPT-4o achieves 95% task accu-
racy, significantly outperforming the 48% accuracy
under autonomous mode (relatively by 97.9%),
and even surpassing human task-solving accuracy
by 6.7%. This suggests potential productivity in-
creases when solving tasks together with strong
LLM-based agents.

On the other hand, copilot mode with the smaller
Llama 8B model does not bring similar accuracy
increases, but slightly degrades the task accuracy
by 8%, indicating the limited utility of LLM-based
agents backboned by weaker LLMs.

Figure 3: Correlation between Human Step Count and
End-to-End Task Accuracy.

4.2 Copilot Mode Requires Minimal Human
Intervention

Despite the high task success rates, the GPT-based
agent easily achieves the highest accuracy with an
average of 1.1 human steps, taking only 15.2%
of the entire trajectory. Instead, the LLM agent
performs the majority, more precisely 84.8% of
task steps. Similarly, when shifting to the weaker
LLaMa model, the human-llm collaboration pro-
cess requires two times more human involvement,
resulting in humans and LLM agents spending
roughly similar amounts of effort, taking 4.47 and
4.15 respectively. Figure 3 shows the correlation
between human step count and end-to-end task ac-
curacy.

Qualitatively, humans often choose to intervene
when they observe that the LLM has gotten stuck
(e.g., producing the same invalid actions multiple
times) or performs an obviously wrong action (e.g.,
clicking ‘Customers’ instead of ‘Orders’ tab when
searching for a particular order), especially when
the webpage layout is less common or has a con-
fusingly large number of elements.

5

Live
Website

Dynamic
Website

End-to-End
Human Annotation

Human-Agent
Interaction

Human-Agent
Co-task Execution

Agent
Evaluation

WebArena ✓ ✗ ✗ ✗ ✗ ✗

SeeAcT ✗ ✗ ✓ ✗ ✗ ✗

BrowserGym ✓ ✗ ✗ ✗ ✗ ✗

WebLinX ✗ ✗ ✓ ✓ ✗ ✗

WebCanvas ✓ ✓ ✓ ✗ ✗ ✓

WebOlympus ✓ ✓ ✗ ✓ ✗ ✓

COWPILOT ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Comparison of COWPILOT with existing agent web navigation frameworks.

4.3 Agents Drive Up to Half of the Success

In CoPilot mode, we notice that agent-drive com-
pletion accuracy was up to 52% of the time with
GPT-4o model. Note that, given the task accuracy
was 0.95, the copilot-mode agent successfully initi-
ated half of the successes. These findings highlight
that agents can follow the task objective and under-
stand user actions to drive the task up to succeed.

5 Related Works

5.1 Web Agent Plugin

The rise of LLM agents has led to the development
of open-source toolkits for web automation, avail-
able as APIs, simulated environments, and Chrome
extensions. Tools like MultiOn (MultiOn, 2024)
and Anthropic (Anthropic, 2024) provide APIs for
agent use but require setting up Docker images,
posing barriers for non-technical users. Browser-
Gym (Drouin et al., 2024), AgentLab (Chezelles
et al., 2024), WebArena (Zhou et al., 2023) utilize
a dedicated Chromium browser instance to per-
form tasks on specified websites. However, this
approach isolates browsing sessions, restricting
multi-tab navigation and diverging from standard
workflows, which limits practical usability.

Chrome extensions, as adopted by tools like We-
bCanvas (Pan et al., 2024b), WebOlympus (Zheng
et al., 2024b), OpenWebAgent (Iong et al., 2024),
and Taxy (TaxyAI, 2024), present a more user-
friendly alternative. They are easy to install,
lightweight, and integrate seamlessly into standard
browsing environments, making them accessible to
end-users. While similar to COWPILOT, the afore-
mentioned extensions lack features for fostering
richer human-agent collaboration. Table 3 further
compares how COWPILOT with the existing frame-
works by illustrating its novel features.

5.2 LLM Agents for Web automation

Web automation has evolved through advance-
ments in LLM-based agents and benchmarks. Early

systems relied on HTML structures and accessi-
bility trees (Deng et al., 2024; Gur et al., 2023,
2022; Kim et al., 2023). Visual-based systems
such as SeeACT (Zheng et al., 2024a), VisualWe-
bArena (Koh et al., 2024), WebGUM (Furuta et al.,
2023) integrate spatial and visual understanding,
enhancing agent performance in multimodal tasks.
Benchmarks such as MiniWoB (Shi et al., 2017)
laid the foundation for evaluating these interactions,
while systems like WebShop (Yao et al., 2022), We-
bArena (Zhou et al., 2023), WebLINX (Lù et al.,
2024) expanded to complex multi-step tasks in e-
commerce and real-world websites.

Despite these advances, existing systems focus
largely on full autonomy, with limited support
for human-in-the-loop collaboration. In contrast,
COWPILOT bridges this gap by enabling dynamic,
real-time human-agent interaction. Features like
suggest-then-execute, pause, and resume facilitate
adaptive task execution, make COWPILOT a robust
platform for developing and evaluating agents in
practical, real-world settings.

6 Limitation and Future Work

Currently COWPILOT requires a human to act as
an observer to oversee the task execution. This
setup is intentional so that we can simulate task
execution in live setting. We would like to extend
our work so that it does not require constant human
observation. Rather, we would detect the critical
steps that require human observation only. In the
future, we would extend COWPILOT for a multi-
LLM agent setup where we can simulate a user by
a second LLM agent. Such setup would help us to
approximate human decisions automatically using
LLM autorater (Pan et al., 2024a) and incorporate
an active learning framework (Bai et al., 2024).
We acknowledge a potential ordering bias in the
comparative evaluation of autonomous and CoPilot
modes. We are currently conducting a large-scale
study across a diverse demographic to assess and
mitigate the impact of such biases.

6

Societal Impact

Web agents have significant potential in promot-
ing web accessibility and enhancing user satisfac-
tion. However, their deployment raises important
privacy and security concerns. For instance, track-
ing user actions may expose sensitive information,
which could be exploited for malicious purposes
(e.g.: data theft). Additionally, in rare cases, agents
may inadvertently perform harmful or irreversible
actions (e.g.:confirming financial transactions with-
out explicit user consent). We firmly discourage
any malicious use of COWPILOT. To balance ac-
cessibility with safety, we will not open-source our
codebase. Instead, we will release the extension
publicly through the Chrome Web Store to ensure
controlled access. We will ensure that users can
pick their own API key so that they can use their
preferred third-party LLM provider or their own
local LLM instances so that their information is
not shared with us. Future work must focus on
addressing these safety risks, including develop-
ing robust safeguards to prevent unintended actions
and enhancing privacy protection mechanisms.

Acknowledgments

We would like to thank Daniel Fried, Tianqi Chen,
and Yonatan Bisk for their valuable feedback on
the design of COWPILOT, which contributed signif-
icantly to its development. We also acknowledge
the creators of Taxy (TaxyAI, 2024) and Browser-
Gym (Drouin et al., 2024) for open-sourcing their
codebases on GitHub, which provided invaluable
resources for the development of COWPILOT.

References
Anthropic. 2024. Computer use (beta).

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane
Suhr, Sergey Levine, and Aviral Kumar. 2024. Di-
girl: Training in-the-wild device-control agents with
autonomous reinforcement learning. arXiv preprint
arXiv:2406.11896.

Hsin-Jung Cheng and Akhil Kumar. 2015. Process
mining on noisy logs - can log sanitization help to
improve performance? Decis. Support Syst., 79:138–
149.

Thibault Le Sellier De Chezelles, Maxime Gasse,
Alexandre Drouin, Massimo Caccia, Léo Boisvert,
Megh Thakkar, Tom Marty, Rim Assouel, Sa-
har Omidi Shayegan, Lawrence Keunho Jang,
Xing Han Lù, Ori Yoran, Dehan Kong, Frank F. Xu,

Siva Reddy, Quentin Cappart, Graham Neubig, Rus-
lan Salakhutdinov, Nicolas Chapados, and Alexandre
Lacoste. 2024. The browsergym ecosystem for web
agent research. Preprint, arXiv:2412.05467.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Is-
sam H Laradji, Manuel Del Verme, Tom Marty, Léo
Boisvert, Megh Thakkar, Quentin Cappart, David
Vazquez, et al. 2024. Workarena: How capable
are web agents at solving common knowledge work
tasks? arXiv preprint arXiv:2403.07718.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yu-
taka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. 2023. Multimodal web navigation with
instruction-finetuned foundation models. ArXiv,
abs/2305.11854.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. 2023. A real-world webagent with plan-
ning, long context understanding, and program syn-
thesis. ArXiv, abs/2307.12856.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa
Safdari, Austin Huang, Aakanksha Chowdhery, Sha-
ran Narang, Noah Fiedel, and Aleksandra Faust.
2022. Understanding html with large language mod-
els. ArXiv, abs/2210.03945.

Iat Long Iong, Xiao Liu, Yuxuan Chen, Hanyu Lai,
Shuntian Yao, Pengbo Shen, Hao Yu, Yuxiao Dong,
and Jie Tang. 2024. OpenWebAgent: An open toolkit
to enable web agents on large language models. In
Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 3: Sys-
tem Demonstrations), pages 72–81, Bangkok, Thai-
land. Association for Computational Linguistics.

Geunwoo Kim, Pierre Baldi, and Stephen Marcus
McAleer. 2023. Language models can solve com-
puter tasks. ArXiv, abs/2303.17491.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram
Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and
Daniel Fried. 2024. Visualwebarena: Evaluating mul-
timodal agents on realistic visual web tasks. arXiv
preprint arXiv:2401.13649.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. 2024.
Weblinx: Real-world website navigation with multi-
turn dialogue. arXiv preprint arXiv:2402.05930.

MultiOn. 2024. Agent api.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou,
Sergey Levine, and Alane Suhr. 2024a. Autonomous
evaluation and refinement of digital agents. arXiv
preprint arXiv:2404.06474.

7

https://docs.anthropic.com/en/docs/build-with-claude/computer-use
https://api.semanticscholar.org/CorpusID:8643838
https://api.semanticscholar.org/CorpusID:8643838
https://api.semanticscholar.org/CorpusID:8643838
https://arxiv.org/abs/2412.05467
https://arxiv.org/abs/2412.05467
https://api.semanticscholar.org/CorpusID:258823350
https://api.semanticscholar.org/CorpusID:258823350
https://api.semanticscholar.org/CorpusID:260126067
https://api.semanticscholar.org/CorpusID:260126067
https://api.semanticscholar.org/CorpusID:260126067
https://api.semanticscholar.org/CorpusID:252780086
https://api.semanticscholar.org/CorpusID:252780086
https://doi.org/10.18653/v1/2024.acl-demos.8
https://doi.org/10.18653/v1/2024.acl-demos.8
https://api.semanticscholar.org/CorpusID:257834038
https://api.semanticscholar.org/CorpusID:257834038
https://www.multion.ai/

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei
Leng, Bing Jiang, Hangyu Liu, Yanyi Shang, Shuyan
Zhou, Tongshuang Wu, et al. 2024b. Webcanvas:
Benchmarking web agents in online environments.
arXiv preprint arXiv:2406.12373.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for web-based agents. In In-
ternational Conference on Machine Learning, pages
3135–3144. PMLR.

Wesley G. Siqueira and Laércio Augusto Baldochi.
2018. Leveraging analysis of user behavior from
web usage extraction over dom-tree structure. In
International Conference on Web Engineering.

TaxyAI. 2024. Taxy ai.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xi-
angru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,
Bowen Li, Jaskirat Singh, et al. 2024a. Openhands:
An open platform for ai software developers as gen-
eralist agents. arXiv preprint arXiv:2407.16741.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and
Graham Neubig. 2024b. Agent workflow memory.
arXiv preprint arXiv:2409.07429.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,
35:20744–20757.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024a. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614.

Boyuan Zheng, Boyu Gou, Scott Salisbury, Zheng Du,
Huan Sun, and Yu Su. 2024b. WebOlympus: An
open platform for web agents on live websites. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 187–197, Miami, Florida,
USA. Association for Computational Linguistics.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. 2023. We-
barena: A realistic web environment for building au-
tonomous agents. arXiv preprint arXiv:2307.13854.

8

https://api.semanticscholar.org/CorpusID:43969402
https://api.semanticscholar.org/CorpusID:43969402
https://taxy.ai/
https://doi.org/10.18653/v1/2024.emnlp-demo.20
https://doi.org/10.18653/v1/2024.emnlp-demo.20

A Appendix

Figure 4 shows a screenshot of evaluation results by
COWPILOT. After the task is completed, the sum-
mary will be shown containing the metric values
covered by subsection 2.2. The scores are auto-
calculated based on user intervention count and
pause/resume statistics. The user can also modify
each entry and save a local copy of the trajectory
data by clicking on the download icon.

A.1 Prompt for Action Transformation
Figure 5 shows the prompt we used for
GPT-4o-2024-08-06 to transform the raw user ac-
tion into filtered actions. The prompt is provided
with the event log data structure as well as the agent
action space structure. These structures help the
LLM to be aware of the structural representation
of input raw action. The LLM replies with a list
of actions together with their natural language de-
scription. The output will be used for the LLM
agent action prediction when it is resumed.

Figure 4: Screenshot of COWPILOT evaluation result
page. After each task is completed, the evaluation metric
values are shown as summary.

9

You will be shown a list to HTML eventlistener logdata of the following format:

‘export interface EventLogStructure{

action_type: string; // event type (click/scroll/keyup/input/KeyboardEvent/mouseover/contextmenu)

nodeID?: string; // if set, unique ID of the element acted on

elementName?: string;

DOM?: string;

elementouterHTML?: string;

AXTree?: string; // accessibility tree of the HTML page

Screenshot?: string;

coordinateX?: number;

coordinateY?: number;

clickType?: string;

position?: string;

URL?: string; // URL of the current page whre the events are taking place

scrollData?: {

deltaX: number;

deltaY: number;

deltaMode: number;

isLine: boolean;

isPage: boolean;

isPixel: boolean;};

keyData?: {

key: string;

code: string;

isCtrlPressed: boolean;

isShiftPressed: boolean;

isAltPressed: boolean;

isMetaPressed: boolean;

fulltextentry: string;};

urldata?: { // when new tab is opened, the information of the new url and tab id

url_name: string;

tab_id: number;};}‘

Your task is to clean up the raw event data and make a clean list of user actions in the following format: Agent Action Space

Rules:

1. Try to merge consecutive UserLogStructure whenever possible. For example, you can merge multiple keyup actions in the same

input field as a setvalue event. For consecutive input in a textbox, always pick the final one. For example, 1) setValue(20,

’Hello’) ... 10) setValue (20, ’Hello world’) can be merged into a single action setValue (20, ’Hello world’)

2. If there are repetitive user actions of the same type in the same place, feel free to discard duplicates. This might

specially be true for scroll and mouseover event. For example: two consecutive scrolls in the same direction can be merged.

Or, a random, disjoint scroll can be considered as a noise to be ignored.

3. Only reply with availableActions.name(args) format. Do not write any code.

4. Mouseover user log can often be noisy, only add this to the final list if it is meaningful with the rest of the action

trajectory in prior and after the mouseover event. For example, a mouseover while tying into a textfield is not useful and

can be discarded.

5. Your response must follow json format: [{"thought": short summary of the action, "action": your generated action}].‘

Input: Raw User Actions

Figure 5: Prompt for Action Transformation from Raw Event to Agent Action Space.

10

	Introduction
	CowPilot
	The CowPilot System
	Evaluation Metrics

	Usecases of CowPilot
	Web Automation
	Data Collection from Websites
	Evaluation and Comparative Analysis of Agent Performance

	Exemplar Findings via CowPilot
	Copilot Mode Achieves the Best Accuracy
	Copilot Mode Requires Minimal Human Intervention
	Agents Drive Up to Half of the Success

	Related Works
	Web Agent Plugin
	LLM Agents for Web automation

	Limitation and Future Work
	Appendix
	Prompt for Action Transformation

